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Abstract. We study the Newton stratification in the B+
dR-Grassmannian for GLn associ-

ated to an arbitrary (possibly nonbasic) element of B(GLn). Our main result classifies all
nonempty Newton strata in an arbitrary minuscule Schubert cell. For a large class of ele-
ments in B(GLn), our classification is given by some explicit conditions in terms of Newton
polygons. For the proof, we proceed by induction on n using a previous result of the author
that classifies all extensions of two given vector bundles on the Fargues-Fontaine curve.
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1. Introduction

1.1. Motivation and main result.

The B+
dR-Grassmannian is an analogue of the affine Grassmannian in p-adic geometry.

It was introduced by Caraiani-Scholze [CS17] to study the cohomology of certain Shimura
varieties, and also used by Scholze-Weinstein [SW20] as a crucial tool for the construction
of local Shimura varieties. In addition, it played a fundamental role in the work of Fargues-
Scholze [FS21] on the geometrization of the local Langlands correspondence via the geometric
Satake equivalence for p-adic groups.
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The main objective of this paper is to study a natural stratification of theB+
dR-Grassmannian

known as the Newton stratification, which we briefly describe now. Let us fix a connected
reductive group G over a finite extension E of Qp. We write GrG for the B+

dR-Grassmannian
for G, and GrG,µ for the Schubert cell associated to a dominant cocharacter µ of G. For an
complete algebraically closed extension C of E, we have

GrG(C) = G(BdR)/G(B+
dR) and GrG,µ(C) = G(B+

dR)µ(t)
−1G(B+

dR)/G(B+
dR)

where BdR is the p-adic de Rham period ring with valuation ring B+
dR, residue field C and a

fixed uniformizer t. The Cartan decomposition for G induces a decomposition

GrG =
⊔

µ∈X∗(T )+

GrG,µ

where X∗(T )
+ denotes the set of all dominant cocharacters of G. Moreover, each Schubert cell

GrG,µ is related to the (diamond of the) p-adic flag variety F ℓ(G,µ) via a natural Bialynicki-
Birula map

BBµ : GrG,µ −→ F ℓ(G,µ),

which is an isomorphism if µ is minuscule. In order to define the Newton stratification on
GrG and its Schubert cells, we consider the stack BunG of G-bundles on the Fargues-Fontaine
curve X. By the result of Fargues [Far20], the topological space |BunG | of BunG is in natural

bijection with the set B(G) of Frobenius-conjugacy classes of elements of G(Ĕ), where Ĕ
as usual denotes the p-adic completion of the maximal unramified extension of E. Given
an element b ∈ B(G), we write Eb for the corresponding G-bundle on X. The theorem of
Beauville-Laszlo [BL95] implies that a G-bundle on the Fargues-Fontaine curve is specified by
the gluing data of the trivial G-bundles on Spec (B+

dR) and X −∞, where ∞ is a fixed closed

point on X with residue field C and completed local ring B+
dR. If we fix b ∈ B(G), for every

point x ∈ GrG(C) we can modify the gluing data for Eb by x to obtain a new G-bundle Eb,x.
We thus obtain a map

Newtb : GrG(C) −→ B(G)

which maps each x ∈ GrG(C) to the element b′ ∈ B(G) corresponding to Eb,x. For each
Schubert cell GrG,µ, the Newton stratification associated to b ∈ B(G) is a decomposition into
subdiamonds

GrG,µ =
⊔

b′∈B(G)

Grb
′
G,µ,b

where Grb
′
G,µ,b(C) is the preimage of b′ in GrG,µ(C) under the map Newtb.

The Newton stratification of minuscule Schubert cells was originally introduced in the
aforementioned work of Caraiani-Scholze [CS17] as a key tool for studying the fibers of the
Hodge-Tate period map. It has also been used as a pivotal tool for studying the p-adic period
domain by many authors, such as Chen-Fargues-Shen [CFS21], Shen [She23], Chen [Che22],
Viehmann [Vie24], Nguyen-Viehmann [NV23], and Chen-Tong [CT22].

For the trivial element b = 1, a result of Rapoport [Rap18] shows that the Newton stratum

Grb
′
G,µ,b is nonempty if and only if b′ is an element of the set B(G,−µ) defined by Kot-

twitz [Kot85]. When b is basic, meaning that Eb is semistable, Chen-Fargues-Shen [CFS21]
and Viehmann [Vie24] extends the result of Rapoport to parametrize all nonempty Newton
strata by a generalized Kottwitz set. However, for a general element b ∈ B(G), no explicit
parametrization is known for nonempty Newton strata in an arbitrary Schubert cell.

In order to explain our main result, which classifies all nonempty Newton strata in the
Schubert cell GrG,µ for G = GLn and a minuscule cocharacter µ, we need to set up some
notations. Let us recall that, as observed by Kottwitz [Kot85], the set B(GLn) is naturally



ON NONEMPTINESS OF NEWTON STRATA IN THE B+
dR-GRASSMANNIAN FOR GLn 3

identified with the set of concave polygons on the interval [0, n] with rational slopes and integer
breakpoints, where a polygon refers to a continuous piecewise linear function whose graph
passes through the origin. Given an element b ∈ B(GLn), we write ν(b) for the corresponding
polygon and often regard it as a tuple of rational numbers (ν1(b), · · · , νn(b)) where νi(b)
denotes the slope of ν(b) on the interval [i − 1, i]. We may also represent the dominant
cocharacter µ of GLn as an n-tuple of descending integers (µ1, · · · , µn) and regard it as a
concave polygon on [0, n] whose slope on [i− 1, i] is µi.

Given two arbitrary elements b, b′ ∈ B(GLn), our main result gives an inductive criterion

for the nonemptiness of the Newton stratum Grb
′
GLn,µ,b. Let us provide a brief description of

the inductive criterion here and refer the readers to Theorem 3.1.12 for a precise statement.
If b is basic, meaning that ν(b) is a line segment, the desired classification is given by the
aforementioned results of Chen-Fargues-Shen [CFS21] and Viehmann [Vie24]. If b is not
basic, we have unique elements a ∈ B(GLm) and c ∈ B(GLn−m) for some integer m such
that ν(a) and ν(c) together form a partition of ν(b) with ν(a) being the line segment in ν(b)

of maximum slope. The key observation for our main result is that Grb
′
GLn,µ,b is not empty if

and only if there exist a′ ∈ B(GLm) and c′ ∈ B(GLn−m) with the following properties:

(i) The Newton strata Gra
′

GLm,µ1,a
and Grc

′
GLn−m,µ2,c

are not empty for some minuscule
cocharacters µ1 of GLm and µ2 of GLn−m.

(ii) The vector bundle Eb′ arises as an extension of Ec′ by Ea′ ; in other words, there exists
a short exact sequence of vector bundles

0 Ea′ Eb′ Ec′ 0.

The cocharacters µ1 and µ2 in the property (i) are uniquely determined by a′ and c′. Moreover,
the property (i) imposes explicit bounds on the slopes in ν(a′) and ν(c′), and consequently
yields a finite list of candidates for (a′, c′). For each candidate, we can check the property (ii)
by a previous result of the author [Hon22]. Then for each candidate with the property (ii), we
can inductively proceed to check the property (i); indeed, if ν(b) has r distinct slopes, then
ν(c) has r − 1 distinct slopes while ν(a) is a line segment by construction.

ν(b)

ν(b′)

ν(a)

ν(c)

ν(c′)

ν(b′)

ν(a′)

Figure 1. Illustration of the inductive criterion

For a concrete example, we illustrate how our inductive criterion shows the nonemptiness
of the stratum Grb

′
GL8,µ,b

with
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,

µ = (1, 1, 1, 1, 0, 0, 0, 0).
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The elements a ∈ B(GL3) and c ∈ B(GL5) are given by

ν(a) =

(
2

3
,
2

3
,
2

3

)
and ν(c) =

(
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,
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)
.

We apply the inductive criterion with a′ ∈ B(GL3) and c′ ∈ B(GL5) given by

ν(a′) =

(
−1

3
,−1

3
,−1

3

)
and ν(c′) =

(
1

2
,
1

2
,
1

2
,
1

2
, 0

)
.

Indeed, the nonemptiness of the stratum Grb
′
GL8,µ,b

follows from the following statements:

• Eb′ arises as an extension of Ec′ by Ea′ .
• Gra

′
GL3,µ1,a

with µ1 = (1, 1, 1) and Grc
′
GL5,µ2,c

with µ2 = (1, 0, 0, 0, 0) are not empty.

For the second statement, we note that a and c are basic for ν(a) and ν(c) being line segments.

A special case of our main result reduces to a noninductive criterion as follows:

Theorem 1.1.1. Let µ be a minuscule dominant cocharacter of G = GLn represented by
an n-tuple with entries 0 and 1. Given two arbitrary elements b, b′ ∈ B(GLn) such that
the difference between any two distinct slopes in ν(b) is greater than 1, the Newton stratum

Grb
′
GLn,µ,b is nonempty if and only if the following conditions are satisfied:

(i) The polygon ν(b′) lies below the polygon ν(b) + µ∗ with the same endpoints, where µ∗

denotes the unique dominant cocharacter of GLn in the conjugacy class of µ−1.

(ii) We have inequalities

νi(b
′) ≤ νi(b) ≤ νi(b

′) + 1 for i = 1, · · · , n.
(iii) For each breakpoint of ν(b), there exists a breakpoint of ν(b′) with the same x-coordinate.

ν(b)

ν(b) + µ∗

ν(b′) + id[0,n]

ν(b′)

Figure 2. Illustration of the conditions in Theorem 1.1.1

The condition (i) is in fact equivalent to having b′ in the generalized Kottwitz set considered
by Chen-Fargues-Shen [CFS21] and Viehmann [Vie24]. When b is basic, the condition (i) also
implies the conditions (ii) and (iii). Hence when b is basic Theorem 1.1.1 agrees with the
aforementioned result of Chen-Fargues-Shen [CFS21] and Viehmann [Vie24].

The hypothesis on the cocharacter µ having entries 0 and 1 is insignificant; indeed, without
this assumption we still get a similar statement by a simple reduction technique as stated in
Proposition 3.1.6. On the other hand, the hypothesis on the slopes in ν(b) is crucial. For the
general case, the conditions (i) and (ii) are still necessary but not sufficient.
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1.2. Outline of the proof.

Given a vector bundle E on the Fargues-Fontaine curve X, its minuscule effective modi-
fication at ∞ of degree d refers to an injective bundle map E ′ ↪→ E whose cokernel is the
skyscraper sheaf at ∞ with value C⊕d. The Newton stratum Grb

′
GLn,µ,b is not empty if and

only if there exists a minuscule effective modification Eb′ ↪→ Eb at ∞. We thus wish to classify
all minuscule effective modifications of Eb at ∞. If b is basic, the desired classification is given
by the aforementioned results of Chen-Fargues-Shen [CFS21] and Viehmann [Vie24]. Let us
now assume that b is not basic. We can find a direct sum decomposition

Eb ≃ Ea ⊕ Ec with a ∈ B(GLm) and c ∈ B(GLn−m)

where a is basic such that ν(a) equals the line segment in ν(b) of maximum slope. For every
minuscule effective modification ι : Eb′ ↪→ Eb at ∞, the above decomposition extends to a
commutative diagram of short exact sequences

0 Ea Eb Ec 0

0 Ea′ Eb′ Ec′ 0

α β γ

where α and γ are also minuscule effective modifications at ∞. Conversely, given such a
commutative diagram we apply a result of Chen-Tong [CT22] to observe that α and γ can be
adjusted so that β is a minuscule effective modification at ∞. Then we use a previous result of
the author [Hon22] to classify all vector bundles Ea′ and Ec′ that fit into such a commutative
diagram, and consequently proceed by induction to obtain the desired classification.

1.3. Notations and conventions.

Throughout the paper, we fix the following data:

• E is a finite extension of Qp.

• C is a complete and algebraically closed extension of E.

• G is a reductive group over E with Borel subgroup B and maximal torus T ⊆ B.

We also retain the following notations:

• Ĕ is the p-adic completion of the maximal unramified extension of E.

• B(G) is the set of Frobenius-conjugacy classes of elements of G(Ĕ).

• X∗(T )
+ is the set of all dominant cocharacters of G.

In addition, we use the following standard notations:

• Given a valued field K, we write OK for its valuation ring.

• Given a ringed space S, we write OS for its structure sheaf.

• Given a perfectoid ring R, we write R♭ for its tilt and R◦ for its subring of power
bounded elements.

• Given a perfect Fp-algebra A, we write W (A) for the ring of Witt vectors over A.

Acknowledgments. The author is grateful to Miaofen Chen, Jilong Tong, and Eva Viehmann
for their valuable comments which led to the correct formulation of the main result. The au-
thor is also thankful to the anonymous referee for helpful suggestions. This work was partially
supported by the Simons Foundation under Grant Number 814268 while the author was a
Simons Postdoctoral Fellow at the Simons Laufer Mathematical Sciences Institute in Berkeley,
California.
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2. Preliminaries

In this section, we review some basic facts about the B+
dR-Grassmannian and G-bundles on

the Fargues-Fontaine curve.

2.1. The B+
dR-Grassmannian.

Proposition 2.1.1 ([Fon82, Proposition 2.4], [KL15, Lemma 3.6.3]). Let R be a perfectoid

algebra over C. There exists a natural surjective homomorphism W (R◦♭) ↠ R◦ whose kernel

is a principal ideal of W (R◦♭).

Definition 2.1.2. Let R be a perfectoid algebra over C. Choose a generator t of the kernel
of the map W (R◦♭) ↠ R◦ in Proposition 2.1.1. We write B+

dR(R) for the t-adic completion of

W (R◦♭)[1/p], and define the de Rham period ring associated to R by BdR(R) := B+
dR(R)[1/t].

Proposition 2.1.3 ([Fon82, Proposition 2.17]). The ring BdR(C) is a discretely valued field
with valuation ring B+

dR(C) and residue field C.

We will henceforth write BdR := BdR(C) and B+
dR := B+

dR(C). We also fix a uniformizer t
of BdR in light of Proposition 2.1.3.

Definition 2.1.4. The B+
dR-Grassmannian is the functor GrG that associates to each per-

fectoid affinoid algebra (R,R+) over C the set of pairs (E , β) consisting of a G-torsor E over
Spec (B+

dR(R)) and a trivialization β of E over Spec (BdR(R)).

Proposition 2.1.5 ([SW20, Proposition 19.1.2]). There exists a natural identification

GrG(C) ∼= G(BdR)/G(B+
dR).

Remark. In fact, we can naturally identify GrG as the étale sheafification of the functor that
associates to each perfectoid affinoid algebra (R,R+) over C the cosetG(BdR(R))/G(B+

dR(R)).

Proposition 2.1.6 ([SW20, Corollary 19.3.4]). Given µ ∈ X∗(T )
+, there exists a locally

spatial diamond GrG,µ with

GrG,µ(C) = G(B+
dR)µ(t)

−1G(B+
dR)/G(B+

dR).

Remark. In this paper, we won’t use the language of diamonds in an essential way because
we are only interested in the C-valued points of GrG and GrG,µ.

Definition 2.1.7. Let µ be a dominant cocharacter of G.

(1) We refer to the locally spatial diamond GrG,µ in Proposition 2.1.6 as the Schubert cell
of GrG associated to µ.

(2) We define the parabolic subgroup of G associated to µ by

Pµ := {g ∈ G : lim
t→0

µ(t)gµ(t)−1 exists}.

(3) We define the flag variety associated to the pair (G,µ) by

F ℓ(G,µ) := G/Pµ.

(4) We define the Bialynicki-Birula map associated to µ as the map

BBµ : GrG,µ(C) −→ F ℓ(G,µ)(C)

which associates to gµ(t)−1G(B+
dR) ∈ GrG,µ(C) the parabolic subgroup gPµg

−1, where

g denotes the image of g under the natural map G(B+
dR) → G(C).

Proposition 2.1.8 ([CS17, Theorem 3.4.5]). If µ is a minuscule cocharacter of G, the
Bialynicki-Birula map BBµ is bijective.
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2.2. G-bundles on the Fargues-Fontaine curve.

Definition 2.2.1. Fix a uniformizer π of E and a pseudouniformizer ϖ of C♭. Let q be the
number of elements in the residue field of E.

(1) We set
Y := Spa(WOE

(OC♭) \ {|π[ϖ]| = 0},
where we write WOE

(OC♭) := W (OC♭)⊗W (Fq)OE for the ring of ramified Witt vectors
over OC♭ with coefficients in OE and the Teichmuller lift [ϖ] of ϖ, and define the adic

Fargues-Fontaine curve associated to the pair (E,C♭) by

X := Y/ϕZ

where ϕ denotes the automorphism of Y induced by the q-Frobenius automorphism
on WOE

(OC♭).

(2) We define the schematic Fargues-Fontaine curve associated to the pair (E,C♭) by

X := Proj

⊕
n≥0

H0(Y,OY)
ϕ=πn

 .

Remark. The definition of the adic Fargues-Fontaine curve relies on the fact that the action
of ϕ on Y is properly discontinuous.

Theorem 2.2.2 ([Ked16, Theorem 4.10], [FF18, Théorème 6.5.2], [KL15, Theorem 8.7.7]).
We have the following statements:

(1) X is a Noetherian adic space over E.
(2) X is a Dedekind scheme over E.

(3) There exists an equivalence of the categories of vector bundles on X and X, induced
by pullback along a natural map of locally ringed spaces X −→ X.

Remark. The scheme X is not a curve in the usual sense as it is not of finite type over E.

In light of the statement (3) in Theorem 2.2.2, we will henceforth identify G-bundles on X
with G-bundles on X.

Definition 2.2.3. Given an element b ∈ B(G), we define the associated G-bundle Eb on X
(or on X) by descending along the map Y −→ Y/ϕZ = X the trivial G-bundle on Y equipped
with the ϕ-linear automorphism given by b.

Theorem 2.2.4 ([Far20, Théorème 5.1]). The map B(G) −→ H1
ét(X,G) sending b to the

isomorphism class of Eb is a bijection.

Proposition 2.2.5. The set of isomorphism classes of isocrystals over Ĕ and the set of
isomorphism classes of vector bundles on X admit a natural bijection which is compatible
with direct sums, duals, and ranks.

Proof. Consider an arbitrary integer n > 0. Given b ∈ B(GLn), we write Nb for the isocrystal

over Ĕ with underlying vector space Ĕ⊕n and the Frobenius-semilinear automorphism given
by b. As observed by Kottwitz [Kot85], there exists a natural bijection between B(GLn) and

the set of isomorphism classes of isocrystals over Ĕ of rank n where b ∈ B(GLn) maps to the
isomorphism class of Nb. Moreover, Theorem 2.2.4 yields a bijection between B(GLn) and the
set of isomorphism classes of vector bundles over X of rank n where b ∈ B(GLn) maps to the
isomorphism class of Eb. We thus obtain a bijection between the set of isomorphism classes
of isocrystals over Ĕ and the set of isomorphism classes of vector bundles on X. It is straight
forward to check that this bijection is compatible with diret sums, duals, and ranks. □
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Definition 2.2.6. Let E be a vector bundle on X. We denote by N(E) the isomorphism class

of isocrystals over Ĕ that corresponds to E under the bijection in Proposition 2.2.5.

(1) We write rk(E) for the rank of E , and define the degree of E , denoted by deg(E), to be
the degree of N(E).

(2) We define the Harder-Narasimhan (HN) polygon of E by HN(E) := −Newt(N(E)∨),
where Newt(N(E)∨) refers to the Newton polygon of the dual of N(E).

(3) We say that E is semistable of slope λ if HN(E) is a line segment of slope λ.

Remark. The definition of HN(E) is in line with the convention that Newton polygons are
convex while Harder-Narasimhan polygons are concave. It is also worthwhile to mention
that the correct (or usual) definition of semistability should be given in terms of the Harder-
Narasimhan formalism for vector bundles on X; in fact, the equivalence of our definition and
the correct definition is due to a highly nontrivial result of Fargues-Fontaine [FF18].

Proposition 2.2.7. Let E be a vector bundle on X.

(1) E admits a direct sum decomposition E ≃ ⊕Ei where the Ei’s are semistable vector
bundles on X of distinct slopes.

(2) If the Ei’s are arranged in order of descending slope, HN(E) is given by the concate-
nation of the polygons HN(Ei).

Proof. The assertion is evident by Proposition 2.2.5 and the semisimplicity of isocrystals. □

Remark. The statement (2) implies that the direct summands Ei are uniquely determined
up to permutations.

Definition 2.2.8. Let E be a vector bundle on X. We refer to the direct sum decomposition
E ≃ ⊕Ei in Proposition 2.2.7 as the Harder-Narasimhan (HN) decomposition of E .

2.3. The Newton stratification of Schubert cells and flag varieties.

For the rest of this paper, we fix a closed point ∞ on X given by the following proposition:

Proposition 2.3.1 ([FF18, Théorèmes 6.5.2 and 7.3.3], [CT22, Remark 1.7]). There exists a
closed point ∞ on X with the following properties:

(i) X −∞ is the spectrum of a principal domain Be ⊆ BdR.

(ii) The completed local ring at ∞ is canonically isomorphic to B+
dR.

Remark. A closed point on X corresponds to a characteristic 0 untilt of C♭ (i.e., a perfectoid

field K with an isomorphism K♭ ≃ C♭) up to ϕ-equivalences. We may take ∞ to be the closed

point on X corresponding to C with the identity map on C♭. The field C alone does not
determine ∞ as C♭ has automorphisms which are not ϕ-equivalent to the identity map.

Proposition 2.3.2. The set H1
ét(X,G) is naturally in bijection with the set of isomorphism

classes of triples (E◦, Ê , β) where
• E◦ is a G-bundle on X −∞,

• Ê is a trivial G-bundle on Spec (B+
dR), and

• β is a gluing map of E◦ and Ê over Spec (BdR).

Proof. Every G-bundle on X becomes trivial after the pullback via the map Spec (B+
dR) → X

induced by ∞, as noted by Nguyen-Viehmann [NV23, §2.1] and Chen-Tong [CT22, Remark
1.7]. Hence the desired assertion follows from Proposition 2.3.1 and the theorem of Beauville-
Laszlo [BL95]. □
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Definition 2.3.3. Let E be a G-bundle on X. A modification of E at ∞ is a G-bundle E ′ on
X together with an isomorphism between E and E ′ on X −∞.

Example 2.3.4. Consider an element b ∈ B(G) and a point x ∈ GrG(C). We may write
x = gG(B+

dR) for some g ∈ G(BdR) under the identification GrG(C) ∼= G(BdR)/G(B+
dR) noted

in Proposition 2.1.5. Now, in light of Proposition 2.3.2 we take a triple (E◦, Ê , β) corresponding
to Eb and a G-bundle Eb,x on X corresponding to (E◦, Ê , gβ). By construction, Eb,x is naturally
a modification of Eb at ∞.

Definition 2.3.5. Consider an element b ∈ B(G) and a dominant cocharacter µ of G.

(1) For each x ∈ GrG(C), we refer to the G-bundle Eb,x constructed in Example 2.3.4 as
the modification of Eb at ∞ induced by x.

(2) For each b′ ∈ B(G), we define the associated Newton stratum with respect to b in GrG,µ

as the subdiamond Grb
′
G,µ,b of GrG,µ with

Grb
′
G,µ,b(C) = {x ∈ GrG,µ(C) : Eb,x ≃ Eb′}.

(3) For each b′ ∈ B(G), we define the associated Newton stratum with respect to b in

F ℓ(G,µ) as the subvariety F ℓ(G,µ, b)b
′
of F ℓ(G,µ) such that F ℓ(G,µ, b)b

′
(C) is

the image of Grb
′
G,µ,b(C) under the map BBµ.

Remark. The subdiamond Grb
′
G,µ,b of GrG,µ is uniquely determined by its set of C-points

since GrG,µ is a locally spatial diamond.

2.4. Subsheaves and extensions of vector bundles on the Fargues-Fontaine curve.

Definition 2.4.1. Given two integers n and d with n > 0, a rationally tuplar polygon of rank
n and degree d is the graph P of a continuous function f with the following properties:

(i) f is defined on [0, n] with f(0) = 0 and f(n) = d.

(ii) f is linear on [i− 1, i] for each i = 1, · · · , n with a rational slope denoted by λi(P).

Example 2.4.2. We are particularly interested in the following rationally tuplar polygons:

(1) For every vector bundle E on X of rank n and degree d, its HN polygon HN(E) is a
rationally tuplar polygon of rank n and degree d.

(2) For G = GLn with Borel subgroup B of upper triangular matrices and maximal
torus T of diagonal matrices, we regard all dominant cocharacters as rationally tuplar
polygons of rank n under the natural identification

X∗(T )
+ ∼= {(ai) ∈ Zn : a1 ≥ a2 ≥ · · · ≥ an}.

(3) We write d/n(n) for the line segment connecting (0, 0) and (n, d), which is a rationally
tuplar polygon of rank n and degree d.

Definition 2.4.3. Let Pn denote the set of rationally tuplar polygons of rank n.

(1) We define the Bruhat order ≥ on Pn by writing P ≥ Q if we have

j∑
i=1

λi(P) ≥
j∑

i=1

λi(Q) for each j = 1, · · · , n

with equality for j = n.

(2) We define the slopewise dominance order ⪰ on Pn by writing P ⪰ Q if we have
λi(P) ≥ λi(Q) for each i = 1, · · · , n.
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Remark. Intuitively, we have P ≥ Q if and only if P lies on or above Q with the same
endpoints, as illustrated by Figure 3.

Q

P

Figure 3. Illustration of the Bruhat order

Proposition 2.4.4 ([Hon21, Theorem 1.2.1]). Let D and E be vector bundles on X of rank
n. Then D is a subsheaf of E if and only if we have HN(E) ⪰ HN(D).

Definition 2.4.5. Given vector bundles D, E and F on X, we define a (D, E ,F)-permutation
of HN(D ⊕F) to be a rationally tuplar polygon P ≥ HN(E) with the following properties:

(i) The tuple (λi(P)) is a permutation of the tuple (λi(HN(D ⊕F))).

(ii) For each i = 1, · · · , rk(E), we have

• λi(P) < λi(HN(E)) only if λi(P) occurs as a slope in HN(D), and

• λi(P) > λi(HN(E)) only if λi(P) occurs as a slope in HN(F).

D
EF

Figure 4. Illustration of the conditions in Definition 2.4.5

Proposition 2.4.6 ([FF18, Proposition 5.6.23]). Given vector bundles D and F on X such
that the minimum slope in HN(D) is greater than or equal to the maximum slope in HN(F),
every extension of F by D splits.

Proposition 2.4.7 ([Hon22, Theorem 3.12], [CT22, Proposition 5.3]). Let D, E and F be
vector bundles on X such that there exists a short exact sequence

0 −→ D −→ E −→ F −→ 0.

There exists a (D, E ,F)-permutation of HN(D ⊕F).

Proposition 2.4.8 ([Hon22, Theorem 4.4], [CT22, Proposition 5.9]). Let D, E and F be
vector bundles on X. We write the HN decomposition of F as

F ≃
m⊕
i=1

Fi

where the Fi’s are arranged in order of descending slope. There exists a short exact sequence

0 −→ D −→ E −→ F −→ 0

if and only if there exists a sequence of vector bundles D = E0, E1, · · · , Em = E on X such that
the polygon HN(Ei−1 ⊕Fi) has an (Ei−1, Ei,Fi)-permutation for each i = 1, · · · ,m.
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3. Nonempty Newton strata in minuscule Schubert cells for GLn

In this section, we classify all nonempty Newton strata in an arbitrary minuscule Schubert
cell for GLn by studying modifications of vector bundles on the Fargues-Fontaine curve. We
first establish in §3.1 an inductive classification for nonempty Newton strata associated to
an arbitrary element of B(GLn). We then prove in §3.2 some combinatorial lemmas about
rationally tuplar polygons and use them in §3.3 to give an explicit classification of all nonempty
Newton strata associated to a large class of element of B(GLn). Throughout this section, we
take dominant cocharacters of GLn with respect to the standard Borel subgroup of upper
triangular matrices and the standard maximal torus of diagonal matrices.

3.1. An inductive classification of nonempty Newton strata.

Definition 3.1.1. Given a rationally tuplar polygon P of rank n, we define its dual to be
the rationally tuplar polygon P∗ with λi(P∗) = −λn+1−i(P) for each i = 1, · · · , n.
Example 3.1.2. We illustrate the notion of duality for the polygons in Example 2.4.2.

(1) For a vector bundle E on X of rank n, we have HN(E)∗ = HN(E∨) where E∨ denotes
the dual bundle of E .

(2) For a dominant cocharacter µ of GLn, the polygon µ∗ represents the unique dominant
cocharacter in the conjugacy class of µ−1.

(3) For arbitrary integers d and n, we have d/n(n)∗ = −d/n(n).

Proposition 3.1.3 ([CFS21, Proposition 5.2], [Vie24, Corollary 5.4]). Let b and b′ be elements
of B(GLn) such that Eb is semistable. Given a dominant cocharacter µ of GLn, the Newton

stratum Grb
′
GLn,µ,b is nonempty if and only if we have

ν(b) + µ∗ ≥ ν(b′) (3.1)

where ν(b) and ν(b′) respectively denote HN(Eb) and HN(Eb′).
Remark. For a reductive group G and a basic element b ∈ B(G), the results of Chen-Fargues-
Shen [CFS21, Proposition 5.2] and Viehmann [Vie24, Corollary 5.4] classify all nonempty
newton strata with respect to b in an arbitrary Schubert cell in terms of the Kottwitz map
and the Newton map defined by Kottwitz [Kot85]. In our context, their results are translated
to Proposition 3.1.3 by the following facts:

(a) An element b ∈ B(GLn) is basic if and only if Eb is semistable.

(b) The condition involving the Kottwitz map holds for all elements in B(GLn).

(c) The condition involving the Newton map is equivalent to the inequality (3.1) as ν(b)
and ν(b′) are identified with the (concave) Newton polygons of b and b′.

Lemma 3.1.4. Let b be an element of B(GLn). For x = 1(n)(t)GLn(B
+
dR) ∈ GrGLn,1(n)(C),

we have HN(Eb,x) = HN(Eb)− 1(n).

Proof. Let us write the HN decomposition of Eb as

Eb ≃
m⊕
i=1

Ebi with bi ∈ B(GLni).

For each i = 1, · · · ,m, we take xi := 1(ni)(t)GLni(B
+
dR) ∈ GrGLni ,1

(ni)(C). Then we have

HN(Ebi,xi
) ≤ HN(Ebi)− 1(ni) by Proposition 3.1.3 and thus find HN(Ebi,xi

) = HN(Ebi)− 1(ni)

as HN(Ebi)− 1(ni) is a line segment. Now the desired assertion follows by the fact that Eb,x is
a direct sum of the vector bundles Ebi,xi

. □
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Proposition 3.1.5. Let µ be a dominant cocharacter of GLn. For elements b, b′ ∈ B(GLn),

the Newton stratum Grb
′
GLn,µ,b is not empty if and only if it contains a C-point.

Proof. The assertion is evident by definition. □

Proposition 3.1.6. Let µ be a dominant cocharacter of GLn with nonnegative slopes. For
two elements b, b′ ∈ B(GLn), we have the following equivalent conditions:

(i) Grb
′
GLn,µ,b is nonempty.

(ii) GrbGLn,µ∗,b′ is nonempty.

(iii) Grb̃
′

GLn,µ+1(n),b
is nonempty for b̃′ ∈ B(GLn) with HN(E

b̃′
) = HN(Eb′)− 1(n).

Proof. For x = gµ(t)G(B+
dR) ∈ Grb

′
GLn,µ,b(C), we take x∗ := g−1µ∗(t)G(B+

dR) ∈ GrGLn,µ∗(C)

and find Eb′,x∗ ≃ Eb, thereby deducing that x∗ lies in GrbGLn,µ∗,b′(C). Similarly, every point in

GrbGLn,µ∗,b′(C) gives rise to a point in Grb
′
GLn,µ,b(C). Hence by Proposition 3.1.5 we establish

the equivalence of the conditions (i) and (ii).

Now it remains to verify the equivalence of the conditions (i) and (iii). For every x =

gµ(t)G(B+
dR) ∈ Grb

′
GLn,µ,b(C), we take x̃ := gµ(t)1(n)(t)G(B+

dR) ∈ GrGLn,µ+1(n)(C) and find

Eb,x̃ ≃ E
b̃′
by Lemma 3.1.4, thereby deducing that x̃ lies in Grb̃

′

GLn,µ+1(n),b
(C). Conversely, for

every x̃ := gµ(t)1(n)(t)G(B+
dR) ∈ GrGLn,µ+1(n)(C) we take x := gµ(t)G(B+

dR) ∈ Grb
′
GLn,µ,b(C)

and find Eb,x ≃ Eb′ by Lemma 3.1.4, thereby deducing that x lies in Grb
′
GLn,µ,b(C). Hence we

complete the proof by Proposition 3.1.5. □

Remark. In light of Proposition 3.1.6, for our desired classification it suffices to consider
minuscule cocharacters with slopes 0 and 1.

Definition 3.1.7. Let E be a vector bundle on X of rank n.

(1) Given a dominant cocharacter µ of GLn, we define an effective modification of E at ∞
of type µ to be an injective OX -module map E ′ ↪→ E whose cokernel is the skyscraper

sheaf at ∞ with value
n⊕

i=1

B+
dR/t

λi(µ)B+
dR.

(2) We say that an effective modification E ′ ↪→ E at ∞ is minuscule of degree d if its type
is minuscule of degree d with slopes 0 and 1.

Proposition 3.1.8. Take a dominant cocharacter µ of GLn and two elements b, b′ ∈ B(GLn).

(1) If µ has nonnegative slopes, the Newton stratum Grb
′
GLn,µ,b is nonempty if and only if

there exists an effective modification Eb′ ↪→ Eb at ∞ of type µ.

(2) If µ is minuscule with slopes 0 and 1, the Newton stratum Grb
′
GLn,µ,b is nonempty if

and only if there exists a minuscule effective modification Eb′ ↪→ Eb at ∞.

Proof. As the second statement is a special case of the first statement, it suffices to prove the
first statement. If Grb

′
GLn,µ,b is not empty, Proposition 3.1.5 yields a point x ∈ Grb

′
GLn,µ,b(C),

which gives rise to an effective modification Eb,x ↪→ Eb at ∞ of type µ. Let us now assume for
the converse that there exists an effective modification Eb′ ↪→ Eb at ∞ of type µ. Take triples

(E◦
b , Êb, βb) and (E◦

b′ , Êb′ , βb′) which respectively correspond to Eb and Eb′ under the bijection in
Proposition 2.3.2. We may set E◦

b = E◦
b′ since the map Eb′ ↪→ Eb is an isomorphism on X −∞.

Then we conjugate βb by a suitable element in GLn(B
+
dR) to write βb′ = gµ(t)βb for some

g ∈ GLn(B
+
dR), and in turn find gµ(t)GLn(B

+
dR) ∈ Grb

′
GLn,µ,b(C) to complete the proof. □
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Proposition 3.1.9. Let E and E ′ be vector bundles on X of rank n. Take a direct sum
decomposition

E ≃ D ⊕ F (3.2)

such that HN(D) coincides with the line segment of maximal slope in HN(E). There exists
a minuscule effective modification E ′ ↪→ E at ∞ if and only if there exist minuscule effective
modifications D′ ↪→ D and F ′ ↪→ F at ∞ with a short exact sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0.

Proof. The assertion is essentially a result of Chen-Tong [CT22, Proposition 4.6]. Our main
observation is that, while the result in loc. cit. for G = GLn only concerns the case where E is
semistable, its proof remains valid without the semistability assumption on E . For convenience
of the readers, we explain how the result in loc. cit. is translated to the desired assertion.

Let us take b, b′ ∈ B(GLn) with E ≃ Eb and E ′ ≃ Eb′ . We write r for the rank of D and P
for the standard parabolic subgroup of GLn with Levi subgroup

M := GLr ×GLn−r ⊆ GLn .

The direct sum decomposition (3.2) corresponds to an element bM ∈ B(M) which maps
to b under the natural map B(M) −→ B(G). Let E(M, b′) denote the set of all elements
b′M ∈ B(M) which correspond to a direct sum D′ ⊕ F ′ for some vector bundles D′ of rank r
and F ′ of rank n− r such that E ′ ≃ Eb′ arises as an extension of F ′ by D′.

We take µ to be the minuscule dominant cocharacter of GLn of degree d := deg(E)−deg(E ′)
with slopes 0 and 1. In addition, we choose an arbitrary element w in the Weyl group of GLn

and denote by µw the dominant cocharacter of M whose M -conjugacy class contains the w-
conjugate of µ. We have µw = (µ1, µ2) for some minuscule dominant cocharacters µ1 of GLr

and µ2 of GLn−r. We denote the degrees of µ1 and µ2 respectively by d1 and d2.

Let F ℓ(GLn, µ)
w
P be the subscheme of F ℓ(GLn, µ) given by the P -orbit of Pµw . The

projection to M induces a map

prP,w : F ℓ(GLn, µ)
w
P −→ F ℓ(M,µw).

The aforementioned result of Chen-Tong [CT22, Proposition 4.6] yields an identity

prP,w

(
F ℓ(GLn, µ)

w
P ∩ F ℓ(GLn, µ, b)

b′
)
=

⊔
b′M∈E(M,b′)

F ℓ(M,µw, bM )b
′
M . (3.3)

As both µ and µw are minuscule, Proposition 2.1.8 implies that the Newton strata on GrGLn,µ

and GrM,µw are respectively identified with the Newton strata on F ℓ(GLn, µ) and F ℓ(M,µw).
Hence the identity (3.3) shows that for minuscule effective modifications α : D′ ↪→ D and
β : F ′ ↪→ F at ∞ of degrees d1 and d2 we have the following equivalent conditions:

(i) There exists a commutative diagram of short exact sequences

0 D E F 0

0 D′ E ′ F ′ 0

α β (3.4)

with the top row given by the direct sum decomposition (3.2) and the middle vertical
arrow being a minuscule effective modification at ∞ (of degree d).

(ii) There exists a short exact sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0.

Since w is arbitrary, we deduce the desired assertion. □
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Remark. The necessity part of Proposition 3.1.9 is evident as every minuscule effective
modification E ′ ↪→ E at ∞ gives rise to a commutative diagram (3.4). The main point of
Proposition 3.1.9 is the sufficiency part, which is essentially equivalent to the identity (3.3)
by Chen-Tong [CT22].

Proposition 3.1.10 ([FF18, §5.5.2.1]). Let E be a vector bundle on X. For every minuscule
effective modification E ′ ↪→ E at ∞, its degree is equal to deg(E)− deg(E ′).

Lemma 3.1.11. Let E and E ′ be vector bundles on X of rank n such that E is semistable.
Take µ to be the minuscule dominant cocharacter of GLn of degree d := deg(E)−deg(E ′) with
slopes 0 and 1. There exists a minuscule effective modification E ′ ↪→ E at ∞ if and only if E
and E ′ satisfy the following equivalent inequalities:

HN(E) + µ∗ ≥ HN(E ′) and HN(E ′) + 1(n) ⪰ HN(E) ⪰ HN(E ′). (3.5)

Proof. By Proposition 3.1.3, Proposition 3.1.8 and Proposition 3.1.10, there exists a minuscule
effective modification E ′ ↪→ E at ∞ if and only if E and E ′ satisfy the first inequality in (3.5).
If we write λ for the slope of the line segment HN(E), the polygon HN(E)+µ∗ has two distinct
slopes λ and λ − 1. Hence it is not hard to verify the equivalence of the two inequalities in
(3.5) by the concavity of HN polygons, thereby deducing the desired assertion. □

Theorem 3.1.12. Let µ be a minuscule dominant cocharacter of GLn with slopes 0 and 1.
Consider two arbitrary elements b, b′ ∈ B(GLn). Take a direct sum decomposition

Eb ≃ Ea ⊕ Ec with a ∈ B(GLr) and c ∈ B(GLn−r)

such that HN(Ea) coincides with the line segment of maximal slope in HN(Eb).

(1) If the degree of µ is not equal to deg(Eb)− deg(Eb′), the Newton stratum Grb
′
GLn,µ,b is

empty.

(2) If the degree of µ is equal to deg(Eb) − deg(Eb′) the Newton stratum Grb
′
GLn,µ,b is

nonempty if and only if there exist a′ ∈ B(GLr) and c′ ∈ B(GLn−r) with the fol-
lowing properties:

(i) We have HN(Ea′) + 1(r) ⪰ HN(Ea) ⪰ HN(Ea′).
(ii) If we write the HN decomposition of Ec′ as

Ec′ ≃
m⊕
i=1

Fi

where Fi are arranged in order of descending slope, there exists a sequence of
vector bundles Ea′ = E0, E1, · · · , Em = Eb on X such that HN(Ei−1 ⊕ Fi) has an
(Ei−1, Ei,Fi)-permutation for each i = 1, · · · , r.

(iii) The Newton stratum Grc
′
GLn,µ,c is nonempty where µ is a minuscule dominant

cocharacter of GLn−r of degree d := deg(Ec)− deg(Ec′) with slopes 0 and 1.

Proof. The assertion is straightforward to verify by Proposition 2.4.8, Proposition 3.1.8,
Proposition 3.1.9, Proposition 3.1.10, and Lemma 3.1.11. □

Remark. The elements a ∈ B(GLr) and c ∈ B(GLn−r) are uniquely determined by the HN
decomposition of Eb. In addition, the Schubert cell GrGLn,µ contains finitely many nonemtpy
Newton strata, as easily seen by Proposition 2.4.4 and Proposition 3.1.8. Hence the conditions
(i) and (iii) together yield finitely many candidates for a′ ∈ B(GLr) and c′ ∈ B(GLn−r). We
can thus use Theorem 3.1.12 to inductively classify all nonempty Newton strata in an arbitrary
minuscule Schubert cell of GrGLn .
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3.2. Concave rationally tuplar polygons.

Definition 3.2.1. Given a rationally tuplar polygon P, we define its concave rearrangement

to be the rationally tuplar polygon P̂ such that the tuple (λi(P̂)) is the rearrangement of
(λi(P)) in descending order.

Lemma 3.2.2. For every rationally tuplar polygon P, we have P̂ ≥ P.

Proof. The assertion is evident by definition. □

Remark. In fact, P̂ is the maximal rearrangement of P with respect to the Bruhat order.

Definition 3.2.3. Given two rationally tuplar polygon P and Q, we define their direct sum
P ⊕ Q to be the concave rearrangement of the concatenation of P and Q.

Example 3.2.4. Let us record some important examples of direct sums for our purpose.

(1) For two vector bundles E and F on X, we have HN(E ⊕ F) = HN(E)⊕HN(F).

(2) For two minuscule dominant cocharacters µ1 of GLn1 and µ2 of GLn2 with slopes
0 and 1, their direct sum (as a rationally tuplar polygon) is a minuscule dominant
cocharacter of GLn1+n2 with slopes 0 and 1.

Lemma 3.2.5. Given concave rationally tuplar polygons P,P ′,Q and Q′ with P ≥ P ′

and Q ≥ Q′, we have P ⊕ Q ≥ P ′ ⊕ Q′.

Proof. Let m and n respectively denote the ranks of P and Q. Take two sets A and B which
form a partition of the set {1, · · · ,m+ n} with

(λi(P
′ ⊕ Q′))i∈A = (λi(P

′)) and (λi(P
′ ⊕ Q′))i∈B = (λi(Q

′)).

Let R to be the rationally tuplar polygon of rank m+ n with

(λi(R))i∈A = (λi(P)) and (λi(R))i∈B = (λi(Q)).

Since P,P ′,Q and Q′ are all concave, the inequalities P ≥ P ′ and Q ≥ Q′ together imply

R ≥ P ′ ⊕ Q′. Now we find P ⊕ Q = R̂ ≥ R by Lemma 3.2.2 to complete the proof. □

Remark. Lemma 3.2.5 does not hold without the concavity assumption. For example, if we

take P = Q = d/r(r) for some integers r and d with r > 0, for arbitrary nonlinear convex

polygons P ′ and Q′ of rank r and degree d we do not have P ⊕Q ≥ P ′⊕Q′ despite having
P ≥ P ′ and Q ≥ Q′, as illustrated in Figure 5.

P

Q

P ′

Q′

P ′ ⊕ Q′

Figure 5. A counter example for Lemma 3.2.5 without the concavity assumption

Lemma 3.2.6. Let P and Q be rationally tuplar polygons of rank m and n. For arbitrary
rationally tuplar polygons P ′ of rank m and Q′ of rank n, we have

(P ⊕ Q) + (P ′ ⊕ Q′) ≥ (P + P ′)⊕ (Q + Q′).

Proof. We observe that there exist permutations σ and σ′ of the set {1, · · · ,m+ n} with

λi((P + P ′)⊕ (Q + Q′)) = λσ(i)(P ⊕ Q) + λσ′(i)(P
′ ⊕ Q′) for each i = 1, · · · ,m+ n,

and consequently deduce the desired assertion by the concavity of P ⊕ Q and P ′ ⊕ Q′. □
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3.3. An explicit classification of nonempty Newton strata.

Lemma 3.3.1. Let E be a vector bundle on X of rank n. Every minuscule effective mod-

ification E ′ ↪→ E at ∞ gives rise to a minuscule effective modification Ẽ ↪→ E ′ at ∞ with

HN(Ẽ) = HN(E)− 1(n).

Proof. Let µ be the minuscule dominant cocharacter of GLn of degree d := deg(E)− deg(E ′)

with slopes 0 and 1. Take elements b, b′ and b̃ in B(GLn) with E ≃ Eb, E ′ ≃ Eb′ and Ẽ ≃ E
b̃
.

The effective modification E ′ ↪→ E at ∞ yields a point in Grb
′
GLn,µ,b by Proposition 3.1.8 and

Proposition 3.1.10, and in turn yields a point in Grb̃
GLn,µ∗+1(n),b′

by Proposition 3.1.6. Hence

we obtain a minuscule effective modification Ẽ ↪→ E ′ at ∞ by Proposition 3.1.8 as desired. □

Proposition 3.3.2. Let E be a vector bundle on X of rank n. For every minuscule effective
modification E ′ ↪→ E at ∞, we have

HN(E) + µ∗ ≥ HN(E ′) and HN(E ′) + 1(n) ⪰ HN(E) ⪰ HN(E ′)

where µ is the minuscule dominant cocharacter of GLn of degree d := deg(E) − deg(E ′) with
slopes 0 and 1.

Proof. The second inequality is an immediate consequence of Proposition 2.4.4 and Lemma
3.3.1. Hence it remains to establish the first inequality. Let us write m for the number of
distinct slopes in HN(E) and proceed by induction on m. If E is semistable, the assertion is
evident by Lemma 3.1.11. We henceforth assume that E is not semistable, so that we have
m > 1. Take a direct sum decomposition

E ≃ D ⊕ F

such that HN(D) coincides with the line segment of maximal slope in HN(E). The numbers
of distinct slopes in HN(D) and HN(F) are respectively 1 and m− 1. Now Proposition 3.1.9
yields minuscule effective modifications α : D′ ↪→ D and β : F ′ ↪→ F at ∞ with a short exact
sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0. (3.6)

Let us denote the types of α and β respectively by µ1 and µ2. In a concrete form, we have

µ1 = 1(d1) ⊕ 0(n1−d1) and µ2 = 1(d2) ⊕ 0(n2−d2)

where we set n1 := rk(D) = rk(D′), n2 := rk(F) = rk(F ′), d1 := deg(D) − deg(D′) and
d2 := deg(F) − deg(F ′). By the induction hypothesis, the minuscule effective modifications
α and β at ∞ respectively yield the inequalities

HN(D) + µ∗
1 ≥ HN(D′) and HN(F) + µ∗

2 ≥ HN(F ′).

Then by Example 3.2.4, Lemma 3.2.5 and Lemma 3.2.6 we find

HN(E)+µ∗ = (HN(D)⊕HN(F))+(µ∗
1⊕µ∗

2) ≥ (HN(D)+µ∗
1)⊕ (HN(F)+µ∗

2) ≥ HN(D′⊕F ′).

In addition, by Proposition 2.4.7 the short exact sequence (3.6) yields the inequality

HN(D′ ⊕F ′) ≥ HN(E ′).

We thus obtain the first inequality, thereby completing the proof. □

Remark. The two inequalities in Proposition 3.3.2 are not equivalent in general, although
they are equivalent if E is semistable as shown in Lemma 3.1.11.
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Example 3.3.3. Let us present an example showing that the converse of Proposition 3.3.2
does not hold. Take E and E ′ to be vector bundles on X with

HN(E) = 4/3(3) ⊕ 3/4(4) and HN(E ′) = 1(2) ⊕ 1/3(3) ⊕ 0(2).

By construction, we have rk(E) = rk(E ′) = 7, deg(E) = 7 and deg(E ′) = 3. Now for the
minuscule dominant cocharacter µ of GL7 of degree 4 with slopes 0 and 1, we find

HN(E) + µ∗ ≥ HN(E ′) and HN(E ′) + 1(7) ⪰ HN(E) ⪰ HN(E ′).

HN(E)

HN(E) + µ∗HN(E ′) + 1(7)

HN(E ′)

Figure 6. A counter example for the converse of Proposition 3.3.2

We wish to show that there does not exist a minuscule effective modification E ′ ↪→ E at ∞.
Suppose for contradiction that such a modification exists. Take a direct sum decomposition

E ≃ D ⊕ F
with HN(D) = 4/3(3) and HN(F) = 3/4(4). Proposition 3.1.9 yields minuscule effective

modifications D′ ↪→ D and F ′ ↪→ F at ∞ with a short exact sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0.

Then by Proposition 2.4.7 we obtain a (D′, E ′,F ′)-permutation P of HN(D′ ⊕F ′). Since we
have P ≥ HN(E ′) by construction, we find

λ1(P) ≥ λ1(HN(E ′)) = 1 and λ2(P) ≥ λ2(HN(E ′)) = 1. (3.7)

Moreover, as F ′ is a subsheaf of F by construction, Proposition 2.4.4 implies that all slopes in
HN(F ′) are less than or equal to 3/4. We then deduce by (3.7) that λ1(P) and λ2(P) should
occur as a slope of D′, and in turn find that the inequalities in (3.7) are in fact equalities.

Therefore HN(D′) must contain the line segment 1(2), and consequently is given by 1(2)⊕ d(1)

for some integer d. Then we have d = λi(P) for some i > 2 and thus find d ≤ λi(HN(E ′)) ≤
1/3. On the other hand, since D′ occurs as a minuscule effective modification of D at C,
Proposition 3.3.2 implies d ≥ 1/3. Now we have a desired contradiction as d is an integer
with d ≤ 1/3 and d ≥ 1/3.
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Proposition 3.3.4. Let E and E ′ be vector bundles on X of rank n. Denote by µ the minuscule
dominant cocharacter of GLn of degree d := deg(E) − deg(E ′) with slopes 0 and 1. Assume
that E satisfies the following property:

(∗) All distinct slopes in HN(E) differ by more than 1.

There exists a minuscule effective modification E ′ ↪→ E at ∞ if and only if E and E ′ satisfy
the following conditions:

(i) We have HN(E) + µ∗ ≥ HN(E ′) and HN(E ′) + 1(n) ⪰ HN(E) ⪰ HN(E ′).

(ii) For each breakpoint of HN(E), there exists a breakpoint of HN(E ′) with the same x-
coordinate.

HN(E)

HN(E) + µ∗

HN(E ′) + 1(n)

HN(E ′)

Figure 7. Illustration of the conditions in Proposition 3.3.4

Proof. Let us first assume that E and E ′ satisfy the conditions (i) and (ii). We write the HN
decomposition of E as

E ≃
m⊕
i=1

Ei (3.8)

where the direct summands Ei are arranged in order of descending slope, and set

xi :=
i∑

j=1

rk(Ej) for i = 0, · · · ,m.

By the condition (ii), we get a direct sum decomposition

E ′ ≃
m⊕
i=1

E ′
i (3.9)

where each HN(E ′
i) coincides with the restriction of HN(E ′) on the interval [xi−1, xi]. Then

by the condition (i) we find

HN(E ′
i) + 1(xi−xi−1) ⪰ HN(Ei) ⪰ HN(E ′

i) for i = 1, · · · ,m.

Now for each i = 1, · · · ,m, Lemma 3.1.11 yields a minuscule effective modification E ′
i ↪→ Ei

at ∞ as Ei is semistable. Hence we obtain a minuscule effective modification E ′ ↪→ E at ∞
from the direct sum decompositions (3.8) and (3.9).
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For the converse, we now assume that there exists a minuscule effective modification E ′ ↪→ E
at ∞. Since E and E ′ satisfy the condition (i) by Proposition 3.3.2, it remains to establish
the condition (ii). We proceed by induction on the number m of distinct slopes in HN(E).
If E is semistable, the assertion is vacuously true as HN(E) does not have a breakpoint. We
henceforth assume that E is not semistable, so that we have m > 1. Take a direct sum
decomposition

E ≃ D ⊕ F (3.10)

such that HN(D) coincides with the line segment of maximal slope in HN(E). Let us denote
the slope of HN(D) by λ. By construction, HN(F) has m− 1 distinct slopes which are all less

than λ− 1 by the property (∗). In addition, we have HN(E ′) + 1(n) ⪰ HN(E) by Proposition
3.3.2 and thus find

λi(HN(E ′)) ≥ λ− 1 for i = 1, · · · , rk(D). (3.11)

Now we note by Proposition 3.1.9 that there exist minuscule effective modifications D′ ↪→ D
and F ′ ↪→ F at ∞ with a short exact sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0. (3.12)

Then we find

λi(HN(F ′)) ≤ λi(HN(F)) < λ− 1 for i = 1, · · · , rk(F ′) (3.13)

by Proposition 2.4.4, and also obtain a (D′, E ′,F ′)-permutation P of HN(D′⊕F ′) by Propo-
sition 2.4.7. For each i = 1, · · · , rk(D), the inequalities (3.11) and (3.13) together imply that
λi(P) occurs as a slope in HN(D′). Since we have P ≥ HN(E ′) by construction, we find

λi(P) = λi(HN(D′)) = λi(HN(E ′)) for i = 1, · · · , rk(D)

and consequently deduce from the inequalities (3.11) and (3.13) that all slopes in HN(D′) are
greater than all slopes in HN(F ′). Hence the short exact sequence (3.12) induces a direct sum

E ′ ≃ D′ ⊕F ′ (3.14)

by Proposition 2.4.6, and consequently yields a breakpoint of HN(E ′) with x-coordinate
rk(D′) = rk(D). In addition, since we have a minuscule effective modification F ′ ↪→ F
at ∞, we find by the induction hypothesis that for every breakpoint of HN(F) there exists
a breakpoint of HN(F ′) with the same x-coordinate. We thus establish the condition (ii) by
the direct sum decompositions (3.10) and (3.14), thereby completing the proof. □

Theorem 3.3.5. Let µ be a minuscule dominant cocharacter of GLn with slopes 0 and 1.
Take two arbitrary elements b, b′ ∈ B(GLn) and write ν(b) := HN(Eb) and ν(b′) := HN(Eb′).
Assume that b satisfies the following property:

(∗) All distinct slopes in ν(b) differ by more than 1.

The Newton stratum Grb
′
GLn,µ,b is nonempty if and only if ν(b) and ν(b′) satisfy the following

conditions:

(i) We have ν(b) + µ∗ ≥ ν(b′) and ν(b′) + 1(n) ⪰ ν(b) ⪰ ν(b′).

(ii) For each breakpoint of ν(b), there exists a breakpoint of ν(b′) with the same x-coordinate.

Proof. The assertion is an immediate consequence of Proposition 3.1.8, Proposition 3.1.10
and Proposition 3.3.4. □

Remark. Theorem 3.3.5 is identical to Theorem 1.1.1. For a non-minuscule cocharacter µ of
GLn with slopes in [0, d], we should be able to get a similar classification theorem with d in
place of 1 using the Demazure resolution.
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Example 3.3.6. Let us provide an example to show that Proposition 3.3.4 and Theorem
3.3.5 do not hold without assuming (∗). Take E and E ′ to be vector bundles on X with

HN(E) = 5/4(4) ⊕ 3/4(4) and HN(E ′) = 3/5(5) ⊕ 1/3(3).

Then HN(E) and HN(E ′) do not have breakpoints with the same x-coordinates. We wish to
show that there exists a minuscule effective modification E ′ ↪→ E at ∞. Take vector bundles
D, D′, F and F ′ on X with

HN(D) = 5/4(4), HN(D′) = 1/4(4), HN(F) = HN(F ′) = 3/4(4).

By construction, we have a direct sum decomposition

E ≃ D ⊕ F .

In addition, we obtain minuscule effective modifications D′ ↪→ D and F ′ ↪→ F at∞ by Lemma
3.1.11, and find a short exact sequence

0 −→ D′ −→ E ′ −→ F ′ −→ 0

by Proposition 2.4.8. Therefore Proposition 3.1.9 yields a minuscule effective modification
E ′ ↪→ E at ∞ as desired.

HN(E)

HN(E ′)
HN(D)

HN(F) = HN(F ′)

HN(E ′)

HN(D′)

Figure 8. Illustration of Example 3.3.6
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Astérisque 406 (2018).



ON NONEMPTINESS OF NEWTON STRATA IN THE B+
dR-GRASSMANNIAN FOR GLn 21

[Fon82] Jean-Marc Fontaine, Sur certains types de representations p-adiques du groupe de Galois d’un corps
local; Construction d’un anneau de Barsotti-Tate, Annals of Math. 115 (1982), no. 3, 529–577.

[FS21] Laurent Fargues and Peter Scholze, Geometrization of the local Langlands correspondence,
arXiv:2102.13459.

[Hon21] Serin Hong, Classification of subbundles on the Fargues-Fontaine curve, Algebra & Number Theory
15 (2021), no. 5, 1127–1156.

[Hon22] , Extensions of vector bundles on the Fargues-Fontaine curve II, J. Algebraic Geom., to appear.
[Ked16] Kiran S. Kedlaya, Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not. IMRN

(2016), no. 8, 2544–2567.
[KL15] Kiran S. Kedlaya and Ruochuan Liu, Relative p-adic Hodge theory: Foundations, Astérisque 371
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